Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract In Mediterranean climates, the timing of seasonal rains determines germination, flowering phenology and fitness. As climate change alters seasonal precipitation patterns, it is important to ask how these changes will affect the phenology and fitness of plant populations. We addressed this question experimentally with the annual plant speciesArabidopsis thaliana.In a first experiment, we manipulated the date of rainfall onset and recorded germination phenology on sand and soil substrates. In a second experiment, we manipulated germination date, growing season length and mid‐season drought to measure their effects on flowering time and fitness. Within each experiment, we manipulated seed dormancy and flowering time using multilocus near‐isogenic lines segregating strong and weak alleles of the seed dormancy geneDOG1and the flowering time geneFRI. We synthesized germination phenology data from the first experiment with fitness functions from the second experiment to project population fitness under different seasonal rainfall scenarios.Germination phenology tracked rainfall onset but was slower and more variable on sand than on soil. Many seeds dispersed on sand in spring and summer delayed germination until the cooler temperatures of autumn. The high‐dormancyDOG1allele also prevented immediate germination in spring and summer. Germination timing strongly affected plant fitness. Fecundity was highest in the October germination cohort and declined in spring germinants. The late floweringFRIallele had lower fecundity, especially in early fall and spring cohorts. Projections of population fitness revealed that: (1) Later onset of autumn rains will negatively affect population fitness. (2) Slow, variable germination on sand buffers populations against fitness impacts of variable spring and summer rainfall. (3) Seasonal selection favours high dormancy and early flowering genotypes in a Mediterranean climate with hot dry summers. The high‐dormancyDOG1allele delayed germination of spring‐dispersed fresh seeds until more favourable early fall conditions, resulting in higher projected population fitness.These findings suggest that Mediterranean annual plant populations are vulnerable to changes in seasonal precipitation, especially in California where rainfall onset is already occurring later. The fitness advantage of highly dormant, early flowering genotypes helps explain the prevalence of this strategy in Mediterranean populations. Read the freePlain Language Summaryfor this article on the Journal blog.more » « less
- 
            The seasonal timing of seed germination determines a plant’s realized environmental niche, and is important for adaptation to climate. The timing of seasonal germination depends on patterns of seed dormancy release or induction by cold and interacts with flowering-time variation to construct different seasonal life histories. To characterize the genetic basis and climatic associations of natural variation in seed chilling responses and associated life-history syndromes, we selected 559 fully sequenced accessions of the model annual species Arabidopsis thaliana from across a wide climate range and scored each for seed germination across a range of 13 cold stratification treatments, as well as the timing of flowering and senescence. Germination strategies varied continuously along 2 major axes: 1) Overall germination fraction and 2) induction vs. release of dormancy by cold. Natural variation in seed responses to chilling was correlated with flowering time and senescence to create a range of seasonal life-history syndromes. Genome-wide association identified several loci associated with natural variation in seed chilling responses, including a known functional polymorphism in the self-binding domain of the candidate gene DOG1. A phylogeny of DOG1 haplotypes revealed ancient divergence of these functional variants associated with periods of Pleistocene climate change, and Gradient Forest analysis showed that allele turnover of candidate SNPs was significantly associated with climate gradients. These results provide evidence that A. thaliana ’s germination niche and correlated life-history syndromes are shaped by past climate cycles, as well as local adaptation to contemporary climate.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
